tlx
sha512.cpp
Go to the documentation of this file.
1 /*******************************************************************************
2  * tlx/digest/sha512.cpp
3  *
4  * Public domain implementation of SHA-512 (SHA-2) processor. Copied from
5  * https://github.com/kalven/sha-2, which is based on LibTomCrypt.
6  *
7  * Part of tlx - http://panthema.net/tlx
8  *
9  * Copyright (C) 2018 Timo Bingmann <tb@panthema.net>
10  *
11  * All rights reserved. Published under the Boost Software License, Version 1.0
12  ******************************************************************************/
13 
14 #include <tlx/digest/sha512.hpp>
15 
16 #include <tlx/math/ror.hpp>
17 #include <tlx/string/hexdump.hpp>
18 
19 namespace tlx {
20 
21 /*
22  * LibTomCrypt, modular cryptographic library -- Tom St Denis
23  *
24  * LibTomCrypt is a library that provides various cryptographic algorithms in a
25  * highly modular and flexible manner.
26  *
27  * The library is free for all purposes without any express guarantee it works.
28  */
29 
30 namespace digest_detail {
31 
32 static const uint64_t K[80] = {
33  0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL,
34  0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
35  0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL,
36  0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
37  0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL,
38  0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
39  0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL,
40  0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
41  0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL,
42  0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
43  0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL,
44  0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
45  0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL,
46  0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
47  0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL,
48  0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
49  0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL,
50  0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
51  0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL,
52  0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
53  0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL,
54  0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
55  0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL,
56  0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
57  0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL,
58  0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
59  0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
60 };
61 
62 static inline uint32_t min(uint32_t x, uint32_t y) {
63  return x < y ? x : y;
64 }
65 
66 static inline void store64(uint64_t x, unsigned char* y) {
67  for (int i = 0; i != 8; ++i)
68  y[i] = (x >> ((7 - i) * 8)) & 255;
69 }
70 static inline uint64_t load64(const unsigned char* y) {
71  uint64_t res = 0;
72  for (int i = 0; i != 8; ++i)
73  res |= uint64_t(y[i]) << ((7 - i) * 8);
74  return res;
75 }
76 
77 static inline
78 uint64_t Ch(const uint64_t& x, const uint64_t& y, const uint64_t& z) {
79  return z ^ (x & (y ^ z));
80 }
81 static inline
82 uint64_t Maj(const uint64_t& x, const uint64_t& y, const uint64_t& z) {
83  return ((x | y) & z) | (x & y);
84 }
85 static inline uint64_t Sh(uint64_t x, uint64_t n) {
86  return x >> n;
87 }
88 static inline uint64_t Sigma0(uint64_t x) {
89  return ror64(x, 28) ^ ror64(x, 34) ^ ror64(x, 39);
90 }
91 static inline uint64_t Sigma1(uint64_t x) {
92  return ror64(x, 14) ^ ror64(x, 18) ^ ror64(x, 41);
93 }
94 static inline uint64_t Gamma0(uint64_t x) {
95  return ror64(x, 1) ^ ror64(x, 8) ^ Sh(x, 7);
96 }
97 static inline uint64_t Gamma1(uint64_t x) {
98  return ror64(x, 19) ^ ror64(x, 61) ^ Sh(x, 6);
99 }
100 
101 static void sha512_compress(uint64_t state[8], const uint8_t* buf) {
102  uint64_t S[8], W[80], t0, t1;
103 
104  // Copy state_ into S
105  for (int i = 0; i < 8; i++)
106  S[i] = state[i];
107 
108  // Copy the state into 1024-bits into W[0..15]
109  for (int i = 0; i < 16; i++)
110  W[i] = load64(buf + (8 * i));
111 
112  // Fill W[16..79]
113  for (int i = 16; i < 80; i++)
114  W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
115 
116  // Compress
117  auto RND =
118  [&](uint64_t a, uint64_t b, uint64_t c, uint64_t& d, uint64_t e,
119  uint64_t f, uint64_t g, uint64_t& h, uint64_t i)
120  {
121  t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i];
122  t1 = Sigma0(a) + Maj(a, b, c);
123  d += t0;
124  h = t0 + t1;
125  };
126 
127  for (int i = 0; i < 80; i += 8)
128  {
129  RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i + 0);
130  RND(S[7], S[0], S[1], S[2], S[3], S[4], S[5], S[6], i + 1);
131  RND(S[6], S[7], S[0], S[1], S[2], S[3], S[4], S[5], i + 2);
132  RND(S[5], S[6], S[7], S[0], S[1], S[2], S[3], S[4], i + 3);
133  RND(S[4], S[5], S[6], S[7], S[0], S[1], S[2], S[3], i + 4);
134  RND(S[3], S[4], S[5], S[6], S[7], S[0], S[1], S[2], i + 5);
135  RND(S[2], S[3], S[4], S[5], S[6], S[7], S[0], S[1], i + 6);
136  RND(S[1], S[2], S[3], S[4], S[5], S[6], S[7], S[0], i + 7);
137  }
138 
139  // Feedback
140  for (int i = 0; i < 8; i++)
141  state[i] = state[i] + S[i];
142 }
143 
144 } // namespace digest_detail
145 
147  curlen_ = 0;
148  length_ = 0;
149  state_[0] = 0x6a09e667f3bcc908ULL;
150  state_[1] = 0xbb67ae8584caa73bULL;
151  state_[2] = 0x3c6ef372fe94f82bULL;
152  state_[3] = 0xa54ff53a5f1d36f1ULL;
153  state_[4] = 0x510e527fade682d1ULL;
154  state_[5] = 0x9b05688c2b3e6c1fULL;
155  state_[6] = 0x1f83d9abfb41bd6bULL;
156  state_[7] = 0x5be0cd19137e2179ULL;
157 }
158 
159 SHA512::SHA512(const void* data, uint32_t size) : SHA512() {
160  process(data, size);
161 }
162 
163 SHA512::SHA512(const std::string& str) : SHA512() {
164  process(str);
165 }
166 
167 void SHA512::process(const void* data, uint32_t size) {
168  const uint32_t block_size = sizeof(SHA512::buf_);
169  auto in = static_cast<const uint8_t*>(data);
170 
171  while (size > 0)
172  {
173  if (curlen_ == 0 && size >= block_size)
174  {
176  length_ += block_size * 8;
177  in += block_size;
178  size -= block_size;
179  }
180  else
181  {
182  uint32_t n = digest_detail::min(size, (block_size - curlen_));
183  uint8_t* b = buf_ + curlen_;
184  for (const uint8_t* a = in; a != in + n; ++a, ++b) {
185  *b = *a;
186  }
187  curlen_ += n;
188  in += n;
189  size -= n;
190 
191  if (curlen_ == block_size)
192  {
194  length_ += 8 * block_size;
195  curlen_ = 0;
196  }
197  }
198  }
199 }
200 
201 void SHA512::process(const std::string& str) {
202  return process(str.data(), str.size());
203 }
204 
206  // Increase the length of the message
207  length_ += curlen_ * 8ULL;
208 
209  // Append the '1' bit
210  buf_[curlen_++] = static_cast<uint8_t>(0x80);
211 
212  // If the length is currently above 112 bytes we append zeros then compress.
213  // Then we can fall back to padding zeros and length encoding like normal.
214  if (curlen_ > 112)
215  {
216  while (curlen_ < 128)
217  buf_[curlen_++] = 0;
219  curlen_ = 0;
220  }
221 
222  // Pad up to 120 bytes of zeroes
223  // note: that from 112 to 120 is the 64 MSB of the length. We assume that
224  // you won't hash 2^64 bits of data... :-)
225  while (curlen_ < 120)
226  buf_[curlen_++] = 0;
227 
228  // Store length
231 
232  // Copy output
233  for (int i = 0; i < 8; i++) {
235  state_[i], static_cast<uint8_t*>(digest) + (8 * i));
236  }
237 }
238 
239 std::string SHA512::digest() {
240  std::string out(kDigestLength, '0');
241  finalize(const_cast<char*>(out.data()));
242  return out;
243 }
244 
245 std::string SHA512::digest_hex() {
246  uint8_t digest[kDigestLength];
247  finalize(digest);
248  return hexdump_lc(digest, kDigestLength);
249 }
250 
251 std::string SHA512::digest_hex_uc() {
252  uint8_t digest[kDigestLength];
253  finalize(digest);
254  return hexdump(digest, kDigestLength);
255 }
256 
257 std::string sha512_hex(const void* data, uint32_t size) {
258  return SHA512(data, size).digest_hex();
259 }
260 
261 std::string sha512_hex(const std::string& str) {
262  return SHA512(str).digest_hex();
263 }
264 
265 std::string sha512_hex_uc(const void* data, uint32_t size) {
266  return SHA512(data, size).digest_hex_uc();
267 }
268 
269 std::string sha512_hex_uc(const std::string& str) {
270  return SHA512(str).digest_hex_uc();
271 }
272 
273 } // namespace tlx
274 
275 /******************************************************************************/
static uint64_t Gamma0(uint64_t x)
Definition: sha512.cpp:94
void finalize(void *digest)
finalize computation and output 64 byte (512 bit) digest
Definition: sha512.cpp:205
static uint64_t Gamma1(uint64_t x)
Definition: sha512.cpp:97
uint8_t buf_[128]
Definition: sha512.hpp:60
std::string digest()
finalize computation and return 64 byte (512 bit) digest
Definition: sha512.cpp:239
static uint64_t Sigma0(uint64_t x)
Definition: sha512.cpp:88
std::string digest_hex()
finalize computation and return 64 byte (512 bit) digest hex encoded
Definition: sha512.cpp:245
std::string digest_hex_uc()
finalize computation and return 64 byte (512 bit) digest upper-case hex
Definition: sha512.cpp:251
uint64_t state_[8]
Definition: sha512.hpp:58
uint64_t length_
Definition: sha512.hpp:57
SHA512()
construct empty object.
Definition: sha512.cpp:146
std::string hexdump_lc(const void *const data, size_t size)
Dump a (binary) string as a sequence of lowercase hexadecimal pairs.
Definition: hexdump.cpp:95
static uint64_t Sh(uint64_t x, uint64_t n)
Definition: sha512.cpp:85
void process(const void *data, uint32_t size)
process more data
Definition: sha512.cpp:167
static void sha512_compress(uint64_t state[8], const uint8_t *buf)
Definition: sha512.cpp:101
static uint32_t min(uint32_t x, uint32_t y)
Definition: md5.cpp:32
std::string sha512_hex(const void *data, uint32_t size)
process data and return 64 byte (512 bit) digest hex encoded
Definition: sha512.cpp:257
SHA-512 processor without external dependencies.
Definition: sha512.hpp:28
static uint64_t Ch(const uint64_t &x, const uint64_t &y, const uint64_t &z)
Definition: sha512.cpp:78
static constexpr size_t kDigestLength
digest length in bytes
Definition: sha512.hpp:44
uint32_t curlen_
Definition: sha512.hpp:59
static const uint64_t K[80]
Definition: sha512.cpp:32
static uint64_t Sigma1(uint64_t x)
Definition: sha512.cpp:91
static void store64(uint64_t x, unsigned char *y)
Definition: sha512.cpp:66
static uint64_t Maj(const uint64_t &x, const uint64_t &y, const uint64_t &z)
Definition: sha512.cpp:82
std::string hexdump(const void *const data, size_t size)
Dump a (binary) string as a sequence of uppercase hexadecimal pairs.
Definition: hexdump.cpp:21
std::string sha512_hex_uc(const void *data, uint32_t size)
process data and return 64 byte (512 bit) digest upper-case hex encoded
Definition: sha512.cpp:265
static uint64_t ror64(const uint64_t &x, int i)
ror64 - generic
Definition: ror.hpp:89
static uint64_t load64(const unsigned char *y)
Definition: sha512.cpp:70